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Abstract

Most of the existing studies and derived correlations relate to a uniform and constant heat flux or temperature imposed on a solid surface on
which a parallel flow is developed. More recent works deal withteady forced convection over afflalate when the boundary conditions
change in the time. The present study presents a mathematical model of the unsteady convective heat transfer when the heat flux densit
is variable in time. Based on the energy equation formulation, this allows the analysis of the heat transfer characteristics associated with a
constant laminar parallel flow over a negligible thickness plate. Transients are induced by two heat flux step changes imposed on the plate
surface. The modelling approach is based on two methods: the integtiabd where a fourth order kman—Pohlhausen polynomials are
used for velocity and temperature profiles within the boundary layers, and the differential method with similarity solution. The purpose of this
work is to provide new insights into unsteady convection modelling. In addition, we meant to draw attention to some discordance between
the temporal evolution of the dimensionless parameters and the physical ones.
0 2004 Elsevier SAS. All rights reserved.
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1. Introduction An alternative approach to solving the boundary layer
equations in the external convective heat transfer involves
the use of one of these three techniques: integral, differ-
ential or purely numerical method. The integral approach
was originally proposed by von Karman and applied by
Pohlhausen [1], thus avoiding the inherent complications as-
sociated with similarity methods. The procedure implies first

Convection heat transfer is a complex energy transport
mechanism, as it involvefluid motion as well as heat
diffusion. Therefore, in practical applications, the resolution
of a heat transfer problem between a fluid and a solid
often requires the knowledge of the heat transfer coefficient,

usually denoted by/”. This coefficient incorporates flow gahssummglp?Iynorfmtil prg)ﬁles(,jfortr;e unk_n:)‘Nra?dT, andt
features and thermal properties of both fluid and solid. It en resolution ot the boundary fayer integral momentum

was introduced by the cooling law of Newton, expressed and energy equations in a dimensional form [2—8] in cases of
for steady regimes asp = h(T, — Ty). In the absence steady and unsteady state problem. The differential method
of complementary data, therig a trend to extrapolate Ieadsltoasimilaritysolu_tion [9-11] by use ofappropr.iate_di—

this expression to transient regimes as well. But, in many mensionless groups; this approach reduces the partial differ-

cases, when the boundary conditions are time-dependentSNtia! energy equation to an ordinary differential equation.
this formulation seems to be inadequate and an unsteadyjrhe purely numerical method is used especially to solve the
approach is needed. complex problems as_somated with a pe_lrt|cular geometry. .
The use of dimensionless numbers is a common practice
to nondimentionalize the heat transfer coefficient and to
~* Corresponding author. compress the representation of results. In such cases, the

E-mail address: m.lachi@univ-reims.fr (M. Lachi). description of the convective transport phenomena may
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Nomenclature
a thermal diffusivity ................... fas~1 8¢ thermal boundary layer thickness .......... m
C constant n dynamic similarity variable
h convective heat transfer 1) heatfluxdensity .................... Wi—2

coefficient ................oo... wh2.K-1 A thermal conductivity ............ wh LK1
Nu Nusselt number v kinematic viscosity . ................. 1
Pr Prandtl number 0 temperature differenc@(— Too) . ..o v v v ... K
S, Strouhal number .

. . Superscripts
t timevariable.............................. S
T fluid temperature ..............ooiiii... K/ differentiation with respect tg
U velocity component parallel to the plate -gnt * dimensionless temperature
14 velocity component perpendicular to the + dimensionless quantities

1 .

plate ........... B R REREE 8:4] Subscripts

X,y Cartesian co-ordinates .................... m )
f related to the fluid
Greek symbols p related to the plate surface £ 0)
8 dynamical boundary layer thickness........ m oo in the free stream (at infinity)
sometimes lead to wrong interpretations [12]. The present 0 T ke £ s
work will emphasize this aspedity considering the transient $

thermal interaction between a laminar boundary layer flow b V V V
and a semi-infinite flat plate. The unsteady system behaviour -

is entirely due to the generation of an impulsive heat flux step .
change on the upper face of the flat surface. v

This work provides new data on the unsteady behaviour Te

of the heat exchange coefficient, in addition to other previous g, y
theoretical [4-8,16] and experimental [13-15] (e.g., by using ____—_ -
the flash method) studies. Moreover, the results are useful——-—— 3(x)| &, (x.t
in engineering applications where a transient boundary — = )
condition and a thin contact surface are encountered. =0

Fig. 1. Description of the problem.

2. Description of the problem
3. Governing equations

We consider a laminar steady parallel fluid flow over
a zero-thickness semi-infinite flat plate, initially at thermal
equilibrium. The fluid is assumed to have a Prandtl number
= 0.7, such as the thermal boundary layer is thinner than the

Under steady-state flow but transient heat transfer condi-
tions, the mass, momentum and energy conservation equa-
tions are given by:

hydrodynamical one. The velocity and temperature values 9U | 9V -0 (1)

of the incident flow are respectively, and T,. The ax  dy

thermophysical properties are assumed to be constant, such j/ U 92U

as the fluid hydrodynamical boundary layer is independent Ua 5 = UW ()

of the temperature field. Initially, the plate temperature is aT aT aT 827

assumed to be at the same temperature as the filid, —+U —+V_—=a5— (3)
For timest > 0, the plate surfacey(= 0) is subjected to ot dx dy dy

a time dependent heat flux densityr) which consists of The initial time and boundary conditions to be satisfied
two uniform step changes: from 0 ¢a and frome¢; to ¢». by the velocity and temperature profiles within the fluid are

Time 11 is the duration of the first step, whily is applied  as follows:

indefinitely after this duration, as illustrated in Fig. 1. The 7 =7, atr=0

plate has a negligible thickness and is absolutely insulated oT

at the bottom. As a result, the applied heat flux is fully — f<g)y:0=¢(f)
reflected towards the fluid. The schematic representation of { 1 for0O<t<n

the problem is shown in Fig. 1. ¢ forr>n

atx >0, y=0 4)
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U=Uyx, T=Tx atx=0,y>0
U=0, V=0 atx>0, y=0
U=Uyx atx>0,y>$§

T =Ts
T=Ty(x,1)

atx >0, y=4§;
%)

The following temperature differences are defined for
convenience:

0= (T —Tx)

atx >0, y=0

and 6, = (T, — Too)

The problem can be represented by the time dependent

semi-integral form of the energy equation, written in dimen-
sionless form as:

5 5
9 9
Bt/ Y

0

Uuod 00
/ Y=y dy ly=0
0

The solution methodology applied to Eq. (6) is based on
the 4-order polynomial Karman—Pohlhausen approach for
both velocity and temperature fields.

With the foregoing conditions given by Eq. (5), the
temperature profile results as the following fourth-order
polynomial:

(6)

3 4
y y y
0=0p|l—2=—+2(=) —|= 7
| 8 * <5r) (5t> j| )
In a similar manner, the velocity profile is modelled by:
y y 3 y N
U=Ux|2=-2|= =
5.83«
wheres§ = =C 8
Re Vx (8)

The thermal boundary layer thickness is obtained from
Eq. (4), where the temperature gradient at the surface is
calculated by Eq. (7):

Op(x,1) )
¢ (1)
By substituting Egs. (7)—(9) into Eq. (6), the following
partial differential equation is obtained for the surface
temperaturé

5;(x,t) :2)\.f

8Uxc 12,32 4
(@X ¢ 9P 7—C3 ¢9P
16k /U0 5,5 90p
15C3 P) ax
6C , 00p 3C 3,00 4Ux -3/2.,3,3
+ R R 9 _— = —X 9
5);} Pos 5)3(]S P ot 15)»? o0
Fasczt T Tgees R s
(10)

It should be noted that, for no time-variation in the heat
flux, the derivative}? is equal to zero in Eq. (10). For any

811

other imposed function (), the foregoing equation may be
numerically integrated to lead to a solution &y(x, 7).

In this study, we will consider as reference case the
system with air as fluid and a flow velocity df,, =
1 ms~L. Initially (at r = 0) the temperature of the system
iS Too.

Two cases of step changes in the surface heat flux density
¢ (1), from an initial isothermal state, are studied here.

FormA: the first stage is due to the variation of the heat

flux density from 0 tog; = 10 W-m~2 and the

second is associated to the step change #arto

¢2 = 100 Wm~2 (overheating).

FormB: the first stage is due to the variation of the heat
flux density from O tog; = 100 Wm~—2 and the
second is associated to the step change ferto
¢2 = 10 W.m~2 (relaxation).

In both cases the time duration, of the first step from O to
¢1, is fixed atr; = 0.3 s, andpy is applied for all times over
this duration.

With the knowledge of the surface temperatépéx, 1)
and the applied surface heat flux, the transient convective
heat transfer coefficierit and local Nusselt numbéiu can
be determined

0
hx,1) = 5,00 (11)
Nur, 1) = & x (12)

Af

4. Numerical resolution

Eq. (10) was solved by use of the finite difference method
with an explicit upwind numerical scheme. The integration
time step was constant and equal4e = 0.005 s, while
the space step varied fromx = 2 x 1074 m near the
plate leading edge, tax = 10~3 m beyond the abscissa
x=1cm.

Using the subscripj to denote time, and subscripto
represent the location, the numerical representation used
for the discretized Eq. (10) is given by:

5
Pi+1,j+1)

+ A0y 10 +A0=0

3
Pi+1,j+1)

(13)

6
A69P(i+l,j+l) + Asf

+ AZQ}Z’(H—L

4
+ A49P(i+1,/‘+1) + Asf

j+D
A computer Borland Turbo Pascal program was written to

solve Eq. (13) for each mesh nodeK 1, j + 1), by means

of an iterative scanning process applied to the closed interval

where positive roots exist. Such intervals are identified with

the aid of the Sturm rule procedure [8]:

. L. 1
Maximal limit=1+ — ma
| Aol
A
Minimal limit = — 28l
|Ag| + max{|A;|}

x{|Ai|} and

(14)
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After bracketing the root of the function (13) by (14) coefficient(1 — F’t*) is positive (for the grid points near
we use an hybrid algorithm taken Newton—Raphson and the plate, wherd”’ « 1) and an explicit one in the negative
Bisection subroutine [17]. The root returned will be refined case. Then, the values @ are calculated for each grid
untill its accuracy is known witin:106. points ¢, t7) in the dimensionless space, especially the non-

dimensional surface temperatufg0, :™) from which the
convective heat transfer coefficient is deduced.
5. Thedifferential method

To validate the integral method, the same problem was 6. Results and discussion
resolved by a differential method [10], applied after the
initial partial differential system Egs. (1), (2) and (3) as 6.1. Time evolutions by the Karman—Pohlhausen method
transformed into ordinary differential equations.

By introduction of the similarity variable The interface temperature, the convective heat transfer
y coefficient and the Nusselt number responses obtained are
= Vx/Uso (15) plotted, respectively, in Figs. 2, 3 and 4 for the first case

(form A), and in Figs. 5, 6 and 7 for the second one
(form B). Remarkable are the highly unsteady behaviour of
these parameters, as illustrated by the graphs.
, 1 WU , For the temperature curves, it appears that, in both cases,
U=UsF (), V= 2V (nF'—F) (16) the steady state solution isached at a very short time of
They verify the well-known Blasius equation given by: about 0.28 s from the leading edge of the plate to the location

' x = 10 cm. This result agrees with the value given by [8].
F }FF’ -0 17) For the Ioca;ions over = 10 cm, they reach their steady

state values in the second stage of the heat flux step change.

In the momentum conservation Eq. (2), the velocity compo-
nents in thex andy directions become

With the dynamic boundary conditions: "

F/(T}IO):O, F/(UZOO):]- (18) 18 25 cm —
For the calculation of the unsteady temperature field the ™ 20em
following dimensionless quantities are introduced: " 15 om
£ 12
+— Uool =S, (29) ] 10 // 10cm
X p R
T* = T*(n, t+) - (20) 6 5cm
0, ) /
whereS, is the Strouhal number. 2 fom
Itis shown in [10] that the similarity solutions in the form 0
(20) exist only if 0 04 02 03 04 05 06 07 08 09 1
Time (s)
g =20 2 G(n, 1)
Ay Uss ’ (21) Fig. 2. Surface temperature responses in the firt case of heat step change
_ %@ density (form A).
0p =571 G(0.17)
By these transformations, the dimensionless temperature * \ tom \ ‘om
G(n,t) is obtained from the partial differential equation: 251\ \
1 1 1 G \ \
—G"—ZFG+ZFG =[1-F'tt][ — 22 20
Pr 20t 3 [ ] 3+ (22) \
\

with the initial and boundary conditions:

h (W.m2.K")
o

O<t+§tfi G/(O,t-"_):—l 10 10 cm 10 cm
¢ 15cm__20°m

2

tf—<t+<00 G/(O, t+)=_¢_ 5 25¢cm |
1

+ - +) — 0
O<1t < 00! G(OO, ! ) =0 (23) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

Numerical resolution of the transient differential equation

(22) is obtained by a combination of two types of finite Fig. 3. Transient convective heat transfer coefficient, at different locations
differences schemes: an implicit one when the temporal in the first case.



M. Lachi et al. / International Journal of Thermal Sciences 43 (2004) 809-816 813

oI I I ——
180 \\\ \\\ povim?) c | i ] 1 : . . .
I I 1 N
140 1
g A \ B S R S B
FRMILANN AN\ el N\ s ] G S SO S S
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Time (s) Time (s)
Fig. 4. Transient local Nusselt numbedu, with time, ¢, at different Fig. 6. Transient convective heat transfer coefficient, at different locations
locationsx, in the first case. in the second case.

! = I ———
g \\\\\\ i
12 //1/0’: 140 \\

7Tk IR =

L
\ 80 \ \ 20 em 25cm
6 N
60
/ \\ S 25&’“ 1 25cm
4 20 cm 15cm —__ |
\

Op (K)

40 10 cm — 20 —1
1cm \ 15cm 10 15 cm o
) 10 cm \\ 20 5 5cm -
cm

5¢cm ! k/]iy I

S Dy y— BEE —
° ] 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 )
. Time (s)
Time (s)

) Fig. 7. Transient local Nusselt numbeMu, with time, 7, at different
Fig. 5. Surface temperature responses to the second heat flux step Changﬁ)gationSx in the second case S

(form B).

result, the plate temperature field has smaller values than
Temperature curves of both cases present a good agreeqring the first stage.

ment with the steady state solution (15) of Karman—Pohl-

. X ' ) It is seen that for both step changes the temperature is
hausen [16], when increasing the time and the abscissa.

higher as the value of the heat flux step is the greater one.
é X This results from the fact that the plate thickness is neglected

O ) = S aam iy Ue (24) and has no thermal capacity.

' f > In Figs. 3 and 6 it can be seen the dependence of the

For the beginning of the unsteady process due to the convective heat transfer coefficient on the abscisséong

first step change, the evolution of the temperature, for all the plate, it increases with from 1 to 25 cm. In the first
locations, merge, and this indicates that the first stage of thisstage, where & ¢ < 11, from an infinite value the convective
type of heat exchange is purely a conductive phenomena.heat transfer coefficient decreases rapidly. As we can see in
A singular point appears at tima = 0.3 s, where the  the second stage, the distortions of the surface temperature
heat flux step changes its value. Thus, we observe twoinduced by the step change in the heat flux form have
distinctive behaviours accardy to the form of the heat flux  repercussions on the convective heat transfer coefficient.
step change in the second stage evolution wher;. For Then, the lasts evolve in the same manner as in the first
the first case, whem, is greater thanp;, an overheating  stage for the overheating case (Fig. 3), but in a completely
phenomenon appears. Therefore, the surface temperaturéifferent way for the relaxation case (Fig. 6) with form B. In
increases significantly and reashsteady state values that the last case, the local conviset heat transfer coefficient
depend on the location As in the beginning of the first step  grows slowly until the steady state value, from an initial
change, during the first times of this second stage the heatvalue as little as the location is at far distance from the
transfer is also conductive. Meanwhile, for the second caseplate entrance.
(form B), wheng; is less thanp, a relaxation phenomena In industry, instead of the convective heat transfer coef-
appears and therefore, therface temperature decreases ficient, the Nusselt numbeMu is usually used in the con-
slowly in time and tends to the steady state values. As avection calculations, so it is interesting to present some tran-
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sient Nusselt number predictions. These are shown in Figs. 4less temperature evolutions are similar for all abscissa
and 7 where the transient Nusselt number, is graphed as aNhereas, they are not similar on all abscissi the sec-

function of time, for differentc locations. All Nusselt num-
ber curves begin at infinity at= 0 and rapidly decrease with

ond stage evolution, due to the step change fganto ¢,.
Indeed, the beginning of the second stage in the dimension-

time before a period in which they slowly decrease and then |ess time {+) depends on the location This time is equal
tend towards the steady state value. As seen in these figuresp tf and corresponds, at each abscisst 11 = 0.3 s (see

the distortions of thé&lu number appear after the application
of the second step change fratn to ¢». For the form A of
the heat flux density, during the transient evolution, khe
number is as higher as the abscisse a greater one. For
the form B, contrary to the responses to the first form A of
the heat flux densityNu number for the first abscissa (i.e.,
x =5 cm) can be greater than tNe corresponding to the lo-
cations at far distances from the plate (exg= 25 cm). Nev-
ertheless, under steady state conditidvis,increases with
increasingy.

6.2. Comparison with the differential method

The evolutions of the non-dimensional surface tempera-
tureG(0, tT), calculated at five abscissa 5, 10, 15, 20 and
25 cm from the leading edge of the plate, are plotted in the
Figs. 8 and 9, respectively, for the form A and for the form B
step change. In the first stage, due to the first step change
from an initial isothermal state at™ = 0, the dimension-

//Z v

25

20

/ \>< > x=5cm
15 A
o ~x=10cm
g ™ ..
10 x=15¢cm
/// \ \x=20cm|
5 |

0 1 2 3 4 5 6 7 8 9

Dimensionless time, t*

Eqg. (19)). In addition, the dimensionless temperature tends,
at each abscissg to the same constant value corresponding
to the steady state.

From the evolutions of the dimensionless surface tem-
peratureG (0, t*) one can deduce the dimensional ones in
time from Eq. (21). These dimensional temperature evolu-
tionsé,(x, t) are given for the two forms of step changes in
Figs. 10 and 11.

The dimensional surface temperatures obtained by the
differential method differ slowly from those derived from
the integral method and are given in Figs. 2 and 5. The
difference is less than 7%, as it can be seen in Fig. 12, and
is essentially due to the choice of velocity and temperature
profiles used in the integral method. Indeed, the forth
order polynomial profiles chosen here give the steady state

25¢m

20 cm

15cm

10 cm

Or (K)

/
/

0.3

0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Fig. 10. Surface temperature responses to the first heat flux step change
(form A).

Fig. 8. Non-dimensional surface temperature responses to the first heat flux

step change (form A).

3

25

\(=10cm

3'15 /,\\x=15cm \\ \\
1
A
05 /"=2°°"‘ \\ \\\ \\
x=25em\$ \ \
]
00 1 ; 3 4 5 6 7 8 9 10 1" 12

Dimensionless time, t*

Fig. 9. Non-dimensional surfacentperature responses to the second heat
flux step change density (form B).

10cm

/|

0, (K)

\

6 5cm \
4 / \\ \ N 25{
20 cm
2 / \\\ 15¢cm \,‘\
NC 10em —
5cm L . 1 " 1
0 — ] ! I ! !
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (s)

Fig. 11. Surface temperature responses to the second heat flux step change
(form B).
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T T
= Differential x = 5 cm

o Differential x=10 cm | |
¢ Differential x =15 cm
X Differential x = 20 cm
O Differential x = 25 cm ||

———————————————————————————————————————

—————————————————————————————————

= Integral x=5cm

- o Integral x=10cm []
x=15cm
x=20cm [

x=25cm
T

+ Integral
X Integral

______________

1
1 O Integral
I T

__________________________

____________________________

0.4 0.5 0.6 0.7 0.8
time (s)

Fig. 12. Difference between the results of the differential and the integral
approaches on the temperature responses.

temperature (Eqg. (15)) different from that obtained by the
differential method [16]:

1) vx

— [ 25
0.46). (Pri/3V Us (23)

Op(x) =

815

reaches a unique value associated with the steady state.
While, the physical representations of the surface temper-
ature in Figs. 2 and 5 indicate that the steady state values
depend on the locatian.

In conclusion, the return to the dimensional results, ex-
pressed in terms of physical parameters, is essential to well
understand the physical problems, especially for the engi-
neer who must work in the real space. Although the use of
the dimensionless numbers is a convenient way of compress-
ing data, but the description of the transport phenomena in
non-dimensional space can induce some incorrect interpreta-
tions and conclusions if the non-dimensional parameters are
not well defined or understood. &ddition, the return to the
physical parameter representation may point out some phe-
nomena that are not evident in the non-dimensional results.

7. Conclusions

An analytical/numerical gproximate solution has been
presented for the laminar foed convection problem with a

The difference between the steady state surface temperagime variation in the heat flux density over a flat plat. A dif-

tures obtained by the integral method (Eg. (15)) and by the
differential method (Eq. (24)) is reflected in the denomina-
tor coefficient, which is 0.447 in the first equation and 0.46
in the second one. Different polynomial profiles have been
tested in the integral method, but they lead to greater differ-
ences compared to the difemtial method results.

6.3. Fromthe dimensionless results to the physical ones

Through the integral method, the Nusselt number (non-

dimensional parameter) is derived from the convective heat

transfer coefficient, which is dimensional parameter. By

the differential method, the dimensional surface tempera-

ferential method based on exact similarity transformations
was employed to validate the approximate integral method.

The highly unsteady behaviour of the surface temperature
and the convective heat transfer coefficient is clearly put
into evidence. These parameters are strongly dependent on
the form of the boundary condition, especially during the
transient regime. In addition, the asymptotic values show a
good agreement with the steady state solutions.

As regards to the convective heat exchange coefficient,
its evolution presents nattably the same feature: from a
very high value at the beginning of the transient regime, it
decreases rapidly to reach a limiting value which is higher
when the considered abscidgsanearer the leading edge of

tures, from which the convective heat transfer coefficient the plate.

is calculated, are deduced from the dimensionless ones

G(0,tT).

As it was mentioned above, there are some disagree-

However, some care must be taken when analysing the
system evolution in non-dimeiosal space. In fact, the evo-
lutions of the local Nusselt number present some discor-

”"_'e”ts _between the time evolution b(_ahawors of the NON" jance with those corresponding to the local convective heat
dimensional parameters and the physical results, esF’ec'a"ytransfer coefficient. These discordances are also noted when

durlr:jg Lhe rellaxatL(r)]n procleis. In:‘;ft’ ?NI(;QJOU'[ sot;ne care, ON€ihe dimensionless and the dinsional surface temperature
can deduce Irom the evoiution ot the fotal number given are compared. By these exemples, we show that the re-

in IF'g' 7, that durlr:jg the rﬁlaxaltltt)n lph?;e th% hea::]excfhatr;]getum to the physical representation can bring some surprises
'; ess fror:oijhnce neart_ ehp atet ca flng € gﬁe . a? arl ®land points out some phenomena not evident in the non-
>y contrasy, the convective heat transter coefticient evolu- ;o nsjonal results. Then, to insure a correct interpretation
tion (Fig. 6) shows that the inverse behaviour is physically of the physical phenomena, one should always return to a

Frue. In order to not distort the physical meaning qf numer- physical space with independent parameters.
ical solutions, great care must be taken in choosing the di-

mensionless parameters. For instance, a local Nusselt num-
ber as defined by Eq. (12) is meaningless since it contains
two variables) andx, with opposite variations (i.eh de-
creases with increasing.
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